Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
1.
PLoS Pathog ; 20(4): e1012159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662650

RESUMO

Human enteroviruses are the most common human pathogen with over 300 distinct genotypes. Previous work with poliovirus has suggested that it is possible to generate antibody responses in humans and animals that can recognize members of multiple enterovirus species. However, cross protective immunity across multiple enteroviruses is not observed epidemiologically in humans. Here we investigated whether immunization of mice or baboons with inactivated poliovirus or enterovirus virus-like-particles (VLPs) vaccines generates antibody responses that can recognize enterovirus D68 or A71. We found that mice only generated antibodies specific for the antigen they were immunized with, and repeated immunization failed to generate cross-reactive antibody responses as measured by both ELISA and neutralization assay. Immunization of baboons with IPV failed to generate neutralizing antibody responses against enterovirus D68 or A71. These results suggest that a multivalent approach to enterovirus vaccination is necessary to protect against enterovirus disease in vulnerable populations.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Infecções por Enterovirus , Vacina Antipólio de Vírus Inativado , Animais , Camundongos , Reações Cruzadas/imunologia , Anticorpos Antivirais/imunologia , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/virologia , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Anticorpos Neutralizantes/imunologia , Papio/imunologia , Humanos , Poliovirus/imunologia , Feminino , Formação de Anticorpos/imunologia , Enterovirus/imunologia , Camundongos Endogâmicos BALB C , Enterovirus Humano D/imunologia
2.
Vaccine ; 42(9): 2463-2474, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38472067

RESUMO

Enterovirus D68 (EV-D68), a pathogen that causes respiratory symptoms, mainly in children, has been implicated in acute flaccid myelitis, which is a poliomyelitis-like paralysis. Currently, there are no licensed vaccines or treatments for EV-D68 infections. Here, we investigated the optimal viral inactivation reagents, vaccine adjuvants, and route of vaccination in mice to optimize an inactivated whole-virion (WV) vaccine against EV-D68. We used formalin, ß-propiolactone (BPL), and hydrogen peroxide as viral inactivation reagents and compared their effects on antibody responses. Use of any of these three viral inactivation reagents effectively induced neutralizing antibodies. Moreover, the antibody response induced by the BPL-inactivated WV vaccine was enhanced when adjuvanted with cytosine phosphoguanine oligodeoxynucleotide (CpG ODN) or AddaVax (MF59-like adjuvant), but not with aluminum hydroxide (alum). Consistent with the antibody response results, the protective effect of the inactivated WV vaccine against the EV-D68 challenge was enhanced when adjuvanted with CpG ODN or AddaVax, but not with alum. Further, while the intranasal inactivated WV vaccine induced EV-D68-specific IgA antibodies in the respiratory tract, it was less protective against EV-D68 challenge than the injectable vaccine. Thus, an injectable inactivated EV-D68 WV vaccine prepared with appropriate viral inactivation reagents and an optimal adjuvant is a promising EV-D68 vaccine.


Assuntos
Compostos de Alúmen , Enterovirus Humano D , Infecções por Enterovirus , Polissorbatos , Esqualeno , Humanos , Criança , Animais , Camundongos , Anticorpos Antivirais , Vacinas de Produtos Inativados , Oligodesoxirribonucleotídeos , Adjuvantes Imunológicos
3.
MMWR Morb Mortal Wkly Rep ; 73(4): 70-76, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300829

RESUMO

Acute flaccid myelitis (AFM) is a serious neurologic condition primarily affecting children; AFM can cause acute respiratory failure and permanent paralysis. AFM is a rare but known complication of various viral infections, particularly those of enteroviruses (EVs). Increases in AFM cases during 2014, 2016, and 2018 were associated with EV-D68 infection. This report examines trends in confirmed AFM cases during 2018-2022 and patients' clinical and laboratory characteristics. The number of AFM cases was low during 2019-2022 (28-47 cases per year); the number of cases remained low in 2022 despite evidence of increased EV-D68 circulation in the United States. Compared with cases during the most recent peak year (2018), fewer cases during 2019-2021 had upper limb involvement, prodromal respiratory or febrile illness, or cerebrospinal fluid pleocytosis, and more were associated with lower limb involvement. It is unclear why EV-D68 circulation in 2022 was not associated with an increase in AFM cases or when the next increase in AFM cases will occur. Nonetheless, clinicians should continue to suspect AFM in any child with acute flaccid limb weakness, especially those with a recent respiratory or febrile illness.


Assuntos
Viroses do Sistema Nervoso Central , Enterovirus Humano D , Infecções por Enterovirus , Mielite , Doenças Neuromusculares , Criança , Humanos , Estados Unidos/epidemiologia , Doenças Neuromusculares/epidemiologia , Paralisia , Mielite/epidemiologia , Viroses do Sistema Nervoso Central/epidemiologia , Infecções por Enterovirus/epidemiologia
4.
Emerg Infect Dis ; 30(3): 423-431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407198

RESUMO

Surveillance for emerging pathogens is critical for developing early warning systems to guide preparedness efforts for future outbreaks of associated disease. To better define the epidemiology and burden of associated respiratory disease and acute flaccid myelitis (AFM), as well as to provide actionable data for public health interventions, we developed a multimodal surveillance program in Colorado, USA, for enterovirus D68 (EV-D68). Timely local, state, and national public health outreach was possible because prospective syndromic surveillance for AFM and asthma-like respiratory illness, prospective clinical laboratory surveillance for EV-D68 among children hospitalized with respiratory illness, and retrospective wastewater surveillance led to early detection of the 2022 outbreak of EV-D68 among Colorado children. The lessons learned from developing the individual layers of this multimodal surveillance program and how they complemented and informed the other layers of surveillance for EV-D68 and AFM could be applied to other emerging pathogens and their associated diseases.


Assuntos
Viroses do Sistema Nervoso Central , Enterovirus Humano D , Mielite , Doenças Neuromusculares , Doenças Respiratórias , Criança , Humanos , Colorado/epidemiologia , Estudos Prospectivos , Estudos Retrospectivos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
5.
J Microbiol Immunol Infect ; 57(2): 238-245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233293

RESUMO

BACKGROUND: Enterovirus D68 (EV-D68) is an important reemerging pathogen that causes severe acute respiratory infection and acute flaccid paralysis, mainly in children. Since 2014, EV-D68 outbreaks have been reported in the United States, Europe, and east Asia; however, no outbreaks have been reported in southeast Asian countries, including Myanmar, during the previous 10 years. METHODS: EV-D68 was detected in nasopharyngeal swabs from children with acute lower respiratory infections in Myanmar. The samples were previously collected from children aged 1 month to 12 years who had been admitted to the Yankin Children Hospital in Yangon, Myanmar, between May 2017 and January 2019. EV-D68 was detected with a newly developed EV-D68-specific real-time PCR assay. The clade was identified by using a phylogenetic tree created with the Bayesian Markov chain Monte Carlo method. RESULTS: During the study period, nasopharyngeal samples were collected from 570 patients. EV-D68 was detected in 42 samples (7.4 %)-11 samples from 2017 to 31 samples from 2018. The phylogenetic tree revealed that all strains belonged to clade B3, which has been the dominant clade worldwide since 2014. We estimate that ancestors of currently circulating genotypes emerged during the period 1980-2004. CONCLUSIONS: To our knowledge, this is the first report of EV-D68 detection in children with acute lower respiratory infections in Yangon, Myanmar, in 2017-2018. Detection and detailed virologic analyses of EV-D68 in southeast Asia is an important aspect of worldwide surveillance and will likely be useful in better understanding the worldwide epidemiologic profile of EV-D68 infection.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Pneumonia , Infecções Respiratórias , Criança , Humanos , Estados Unidos , Enterovirus Humano D/genética , Mianmar/epidemiologia , Filogenia , Teorema de Bayes , Pneumonia/epidemiologia , Surtos de Doenças , Enterovirus/genética
6.
J Virol ; 98(2): e0199423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240591

RESUMO

Following the successful control of poliovirus, the re-emergence of respiratory enterovirus D68 (EV-D68), a prominent non-polio enterovirus, has become a serious public health concern worldwide. Host innate immune responses are the primary defense against EV-D68 invasion; however, the mechanism underlying viral evasion of the antiviral activity of interferons (IFN) remains unclear. In this study, we found that EV-D68 inhibited type I IFN signaling by cleaving signal transducer and activator of transcription 1 (STAT1), a crucial factor in cellular responses to interferons and other cytokines. We observed that the prototype and circulating EV-D68 strains conserved their ability to induce STAT1 cleavage and attenuate IFN signal transduction. Further investigation revealed that EV-D68 3C protease cleaves STAT1 at the 131Q residue. Interestingly, not all enterovirus-encoded 3C proteases exhibited this ability. EV-D68 and poliovirus 3C proteases efficiently induced STAT1 cleavage; whereas, 3C proteases from EV-A71, coxsackievirus A16, and echoviruses did not. STAT1 cleavage also abolished the nuclear translocation capacity of STAT1 in response to IFN stimulation to activate downstream signaling elements. Overall, these results suggest that STAT1, targeted by viral protease 3C, is utilized by EV-D68 to subvert the host's innate immune response.IMPORTANCEEnterovirus D68 (EV-D68) has significantly transformed over the past decade, evolving from a rare pathogen to a potential pandemic pathogen. The interferon (IFN) signaling pathway is an important defense mechanism and therapeutic target for the host to resist viral invasion. Previous studies have reported that the EV-D68 virus blocks or weakens immune recognition and IFN production in host cells through diverse strategies; however, the mechanisms of EV-D68 resistance to IFN signaling have not been fully elucidated. Our study revealed that EV-D68 relies on its own encoded protease, 3C, to directly cleave signal transducer and activator of transcription 1 (STAT1), a pivotal transduction component in the IFN signaling pathway, disrupting the IFN-mediated antiviral response. Previous studies on human enteroviruses have not documented direct cleavage of the STAT1 protein to evade cellular immune defenses. However, not all enteroviral 3C proteins can cleave STAT1. These findings highlight the diverse evolutionary strategies different human enteroviruses employ to evade host immunity.


Assuntos
Proteases Virais 3C , Enterovirus Humano D , Interferon Tipo I , Transdução de Sinais , Humanos , Proteases Virais 3C/metabolismo , Antígenos Virais/metabolismo , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Enterovirus Humano D/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Fator de Transcrição STAT1/metabolismo , Proteínas Virais/metabolismo
7.
Sci Rep ; 14(1): 2161, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272942

RESUMO

Enterovirus D68 (EV-D68) is an emerging pathogen that has caused outbreaks of severe respiratory disease worldwide, especially in children. We aim to investigate the prevalence and genetic characteristics of EV-D68 in children from Shanghai. Nasopharyngeal swab or bronchoalveolar lavage fluid samples collected from children hospitalized with community-acquired pneumonia were screened for EV-D68. Nine of 3997 samples were EV-D68-positive. Seven of nine positive samples were sequenced and submitted to GenBank. Based on partial polyprotein gene (3D) or complete sequence analysis, we found the seven strains belong to different clades and subclades, including three D1 (detected in 2013 and 2014), one D2 (2013), one D3 (2019), and two B3 (2014 and 2018). Overall, we show different clades and subclades of EV-D68 spread with low positive rates (0.2%) among children in Shanghai between 2013 and 2020. Amino acid mutations were found in the epitopes of the VP1 BC and DE loops and C-terminus; similarity analysis provided evidence for recombination as an important mechanism of genomic diversification. Both single nucleotide mutations and recombination play a role in evolution of EV-D68. Genetic instability within these clinical strains may indicate large outbreaks could occur following cumulative mutations.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Infecções Respiratórias , Criança , Humanos , Epidemiologia Molecular , Enterovirus Humano D/genética , Infecções Respiratórias/epidemiologia , Infecções por Enterovirus/epidemiologia , Filogenia , China/epidemiologia , Surtos de Doenças , Enterovirus/genética
8.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289118

RESUMO

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Assuntos
Endopeptidases , Enterovirus Humano D , Interações entre Hospedeiro e Microrganismos , Vírus Oncolíticos , Piroptose , SARS-CoV-2 , Humanos , Linhagem Celular Tumoral , COVID-19/metabolismo , COVID-19/terapia , COVID-19/virologia , Endopeptidases/genética , Endopeptidases/metabolismo , Enterovirus Humano D/enzimologia , Enterovirus Humano D/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Gasderminas/antagonistas & inibidores , Gasderminas/genética , Gasderminas/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/enzimologia , Vírus Oncolíticos/genética , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
mSphere ; 9(2): e0052623, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38259063

RESUMO

Enterovirus D68 (EV-D68) is predominantly associated with mild respiratory infections, but can also cause severe respiratory disease and extra-respiratory complications, including acute flaccid myelitis. Systemic dissemination of EV-D68 is crucial for the development of extra-respiratory diseases, but it is currently unclear how EV-D68 spreads systemically (viremia). We hypothesize that immune cells contribute to the systemic dissemination of EV-D68, as this is a mechanism commonly used by other enteroviruses. Therefore, we investigated the susceptibility and permissiveness of human primary immune cells for different EV-D68 isolates. In human peripheral blood mononuclear cells inoculated with EV-D68, only B cells were susceptible but virus replication was limited. However, in B cell-rich cultures, such as Epstein-Barr virus-transformed B-lymphoblastoid cell line (BLCL) and primary lentivirus-transduced B cells, which better represent lymphoid B cells, were productively infected. Subsequently, we showed that dendritic cells (DCs), particularly immature DCs, are susceptible and permissive for EV-D68 infection and that they can spread EV-D68 to autologous BLCL. Altogether, our findings suggest that immune cells, especially B cells and DCs, could play an important role in the pathogenesis of EV-D68 infection. Infection of these cells may contribute to systemic dissemination of EV-D68, which is an essential step toward the development of extra-respiratory complications.IMPORTANCEEnterovirus D68 (EV-D68) is an emerging respiratory virus that has caused outbreaks worldwide since 2014. EV-D68 infects primarily respiratory epithelial cells resulting in mild respiratory diseases. However, EV-D68 infection is also associated with extra-respiratory complications, including polio-like paralysis. It is unclear how EV-D68 spreads systemically and infects other organs. We hypothesized that immune cells could play a role in the extra-respiratory spread of EV-D68. We showed that EV-D68 can infect and replicate in specific immune cells, that is, B cells and dendritic cells (DCs), and that virus could be transferred from DCs to B cells. Our data reveal a potential role of immune cells in the pathogenesis of EV-D68 infection. Intervention strategies that prevent EV-D68 infection of immune cells will therefore potentially prevent systemic spread of virus and thereby severe extra-respiratory complications.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Infecções por Vírus Epstein-Barr , Infecções Respiratórias , Humanos , Leucócitos Mononucleares , Herpesvirus Humano 4 , Células Dendríticas
10.
Antiviral Res ; 221: 105755, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984566

RESUMO

Enterovirus D68 (EV-D68), belonging to the genus Enterovirus of the Picornavirus family, is an emerging pathogen that can cause neurological and respiratory diseases in children. However, there is little understanding of the pathogenesis of EV-D68, and no effective vaccine or drug for the prevention or treatment of the diseases caused by this virus is available. Autophagy is a cellular process that targets cytoplasmic proteins or organelles to the lysosomes for degradation. Enteroviruses strategically harness the host autophagy pathway to facilitate the completion of their life cycle. Therefore, we selected an autophagy compound library to screen for autophagy-related compounds that may affect viral growth. By using the neutralization screening assay, we identified a compound, 'licochalcone A' that significantly inhibited EV-D68 replication. To investigate the mechanism by which licochalcone A inhibits EV-D68 replication and to identify the viral life cycle stage it inhibits, the time-of-addition, viral attachment, viral entry, and dual-luciferase reporter assays were performed. The results of the time-of-addition assay showed that licochalcone A, a characteristic chalcone found in liquorice roots and widely used in traditional Chinese medicine, inhibits EV-D68 replication during the early stages of the viral life cycle, while those of the dual-luciferase reporter assay showed that licochalcone A does not regulate viral attachment and entry, but inhibits EV-D68 IRES-dependent translation. Licochalcone A also inhibited enterovirus A71 and coxsackievirus B3 but did not significantly inhibit dengue virus 2 or human coronavirus 229E replication. Licochalcone A regulates IRES translation to inhibit EV-D68 viral replication.


Assuntos
Chalconas , Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Criança , Humanos , Chalconas/farmacologia , Infecções por Enterovirus/tratamento farmacológico , Antígenos Virais , Enterovirus Humano D/fisiologia , Luciferases
11.
Epidemics ; 46: 100736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118274

RESUMO

Recent outbreaks of enterovirus D68 (EV-D68) infections, and their causal linkage with acute flaccid myelitis (AFM), continue to pose a serious public health concern. During 2020 and 2021, the dynamics of EV-D68 and other pathogens have been significantly perturbed by non-pharmaceutical interventions against COVID-19; this perturbation presents a powerful natural experiment for exploring the dynamics of these endemic infections. In this study, we analyzed publicly available data on EV-D68 infections, originally collected through the New Vaccine Surveillance Network, to predict their short- and long-term dynamics following the COVID-19 interventions. Although long-term predictions are sensitive to our assumptions about underlying dynamics and changes in contact rates during the NPI periods, the likelihood of a large outbreak in 2023 appears to be low. Comprehensive surveillance data are needed to accurately characterize future dynamics of EV-D68. The limited incidence of AFM cases in 2022, despite large EV-D68 outbreaks, poses further questions for the timing of the next AFM outbreaks.


Assuntos
COVID-19 , Viroses do Sistema Nervoso Central , Enterovirus Humano D , Infecções por Enterovirus , Mielite , Doenças Neuromusculares , Humanos , COVID-19/epidemiologia , Doenças Neuromusculares/epidemiologia , Mielite/epidemiologia , Surtos de Doenças , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/prevenção & controle
12.
Emerg Infect Dis ; 30(1): 141-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147067

RESUMO

In a 2-year study in Leuven, Belgium, we investigated the use of wastewater sampling to assess community spread of respiratory viruses. Comparison with the number of positive clinical samples demonstrated that wastewater data reflected circulation levels of typical seasonal respiratory viruses, such as influenza, respiratory syncytial virus, and enterovirus D68.


Assuntos
Enterovirus Humano D , Influenza Humana , Vírus Sincicial Respiratório Humano , Humanos , Bélgica/epidemiologia , Águas Residuárias , Vírus Sincicial Respiratório Humano/genética
13.
Virus Res ; 339: 199284, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38040125

RESUMO

Enterovirus D68 (EV-D68) primarily spreads through the respiratory tract and causes respiratory symptoms in children and acute flaccid myelitis (AFM). Type III interferons (IFNs) play a critical role in inhibiting viral growth in respiratory epithelial cells. However, the mechanism by which EV-D68 induces type III IFN production is not yet fully understood. In this study, we show that EV-D68 infection stimulates Calu-3 cells to secrete IFN-λ. The transfection of EV-D68 viral RNA (vRNA) stimulated IFN-λ via MDA5. Furthermore, our findings provide evidence that EV-D68 infection also induces MDA5-IRF3/IRF7-mediated IFN-λ. In addition, we discovered that EV-D68 infection downregulated MDA5 expression. Knockdown of MDA5 increased EV-D68 replication in Calu-3 cells. Finally, we demonstrated that the IFN-λ1 and IFN-λ2/3 proteins effectively inhibit EV-D68 infection in respiratory epithelial cells. In summary, our study shows that EV-D68 induces type III IFN production via the activated MDA5-IRF3/IRF7 pathway and that type III IFNs inhibit EV-D68 replication in Calu-3 cells.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Doenças Neuromusculares , Criança , Humanos , Enterovirus Humano D/genética , Interferon lambda , Sistema Respiratório
14.
J Virol ; 97(12): e0160023, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38047678

RESUMO

IMPORTANCE: Enterovirus D68 (EV-D68) is an emerging respiratory pathogen associated with acute flaccid myelitis. Currently, no approved vaccines or antiviral drugs are available. Here, we report four functionally independent neutralizing antigenic sites (I to IV) by analyses of neutralizing monoclonal antibody (MAb)-resistant mutants. Site I is located in the VP1 BC loop near the fivefold axis. Site II resides in the VP2 EF loop, and site III is situated in VP1 C-terminus; both sites are located at the south rim of the canyon. Site IV is composed of residue in VP2 ßB strand and residues in the VP3 BC loop and resides around the threefold axis. The developed MAbs targeting the antigenic sites can inhibit viral binding to cells. These findings advance the understanding of the recognition of EV-D68 by neutralizing antibodies and viral evolution and immune escape and also have important implications for the development of novel EV-D68 vaccines.


Assuntos
Anticorpos Neutralizantes , Proteínas do Capsídeo , Enterovirus Humano D , Infecções por Enterovirus , Humanos , Capsídeo , Proteínas do Capsídeo/química , Enterovirus Humano D/genética , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia
15.
J Biomed Sci ; 30(1): 96, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110940

RESUMO

BACKGROUND: Human enteroviruses A71 (EV-A71) and D68 (EV-D68) are the suspected causative agents of hand-foot-and-mouth disease, aseptic meningitis, encephalitis, acute flaccid myelitis, and acute flaccid paralysis in children. Until now, no cure nor mucosal vaccine existed for EV-A71 and EV-D68. Novel mucosal bivalent vaccines are highly important for preventing EV-A71 and EV-D68 infections. METHODS: In this study, formalin-inactivated EV-A71 and EV-D68 were used as antigens, while PS-G, a polysaccharide from Ganoderma lucidum, was used as an adjuvant. Natural polysaccharides have the characteristics of intrinsic immunomodulation, biocompatibility, low toxicity, and safety. Mice were immunized intranasally with PBS, EV-A71, EV-D68, or EV-A71 + EV-D68, with or without PS-G as an adjuvant. RESULTS: The EV-A71 + EV-D68 bivalent vaccine generated considerable EV-A71- and EV-D68-specific IgG and IgA titres in the sera, nasal washes, saliva, bronchoalveolar lavage fluid, and feces. These antibodies neutralized EV-D68 and EV-A71 infectivity. They also cross-neutralized infections by different EV-D68 and EV-A71 sub-genotypes. Furthermore, compared with the PBS group, EV-A71 + EV-D68 + PS-G-vaccinated mice exhibited an increased number of EV-D68- and EV-A71-specific IgA- and IgG-producing cells. In addition, T-cell proliferative responses, and IFN-γ and IL-17 secretion in the spleen were substantially induced when PS-G was used as an adjuvant with EV-A71 + EV-D68. Finally, in vivo challenge experiments demonstrated that the immune sera induced by EV-A71 + EV-D68 + PS-G conferred protection in neonate mice against lethal EV-A71 and EV-D68 challenges as indicated by the increased survival rate and decreased clinical score and viral RNA tissue expression. Taken together, all EV-A71/EV-D68 + PS-G-immunized mice developed potent specific humoral, mucosal, and cellular immune responses to EV-D68 and EV-A71 and were protected against them. CONCLUSIONS: These findings demonstrated that PS-G can be used as a potential adjuvant for EV-A71 and EV-D68 bivalent mucosal vaccines. Our results provide useful information for the further preclinical and clinical development of a mucosal bivalent enterovirus vaccine against both EV-A71 and EV-D68 infections.


Assuntos
Enterovirus Humano A , Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Reishi , Criança , Animais , Humanos , Camundongos , Enterovirus Humano D/genética , Enterovirus Humano A/genética , Vacinas Combinadas , Antígenos Virais , Imunoglobulina A , Imunoglobulina G
16.
J Clin Virol ; 169: 105618, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977074

RESUMO

BACKGROUND: Enterovirus-D68 (EV-D68) has appeared biennially in the United States following the 2014 outbreak. It has gained epidemiologic and clinical relevance and was identified as an important pathogen associated with severe respiratory and central nervous system diseases. We aim to describe the clinical and molecular characteristics of the post-pandemic 2022 Enterovirus-D68 outbreak in children evaluated in a tertiary pediatric hospital in Columbus, Ohio. METHODS: EV-D68 RT-PCR was performed on nasopharyngeal specimens collected during Jun-Nov 2022 from children (<18 years), identified by 1) physician-order or 2) random selection of 10-15 specimens weekly that were Rhinovirus/Enterovirus-positive by physician-ordered respiratory virus panel. Patients who tested positive for EV-D68 were identified and clinical data and outcomes were analyzed. Partial viral VP1 region was sequenced and characterized. RESULTS: Forty-four children positive for EV-D68 were identified, among which 88.6 % of patients presented with respiratory symptoms and 61.4 % required PICU admission. Two patients presented with AFM that was attributed to EV-D68. EV-D68 sequences from 2022 clustered within the B3 subclade. CONCLUSIONS: A significant proportion of children identified with EV-D68 during the 2022 outbreak had respiratory compromise requiring PICU admission. As the virus continues evolving, it is important to monitor the activity of EV-D68, characterizing these strains clinically and genetically, which will help to understand the viral pathogenicity and virulence.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Infecções Respiratórias , Criança , Humanos , Estados Unidos/epidemiologia , Ohio/epidemiologia , Criança Hospitalizada , Enterovirus Humano D/genética , Infecções Respiratórias/epidemiologia , Surtos de Doenças
17.
J Clin Virol ; 169: 105617, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977075

RESUMO

INTRODUCTION: Public health measures aimed at controlling transmission of SARS-CoV-2, otherwise known as "lockdown" measures, had profound effects on circulation of non-SARS viruses, many of which decreased to very low levels.  The interrupted transmission of these viruses may have lasting effects. Some of the influenza clades seem to have disappeared during this period, a phenomenon which is described as a "funnel effect". It is currently unknown if the lockdown measures had any effect on the diversity of circulating viruses, other than influenza. Enteroviruses are especially interesting in this context, as the clinical presentation of an infection with a particular enterovirus-type may be clade-dependent. METHODS AND MATERIALS: Enteroviruses were detected in clinical materials using a 5'UTR-based detection PCR, and partial VP-1 sequences were obtained, using methods described before. All samples with EV detections from a large part of the Netherlands were included in the study. The samples originated from general practitioners, general hospitals, university hospitals and public health offices. RESULTS: Five EV-genotypes circulated in significant numbers before and after the lockdown, EV-D68, E-11, CV-A6, CV-B5 and CV-A2. All five genotypes showed decreased genetic diversity after the lockdown, and four indicate a significant number of sequences clustering together with a very high sequence homology. Moreover, children with E-11 and CV-B5 detections were significantly older after the lockdown than before. CONCLUSIONS: The reduced enterovirus transmission in the Netherlands during the pandemic, seems to have led to a decrease in genetic diversity in the five most commonly detected enterovirus serotypes.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Influenza Humana , Criança , Humanos , Enterovirus/genética , Enterovirus Humano D/genética , Sorogrupo , Filogenia
18.
Pathology ; 55(7): 907-916, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852802

RESUMO

Enterovirus D68 (EV-D68) is one of hundreds of non-polio enteroviruses that typically cause cold-like respiratory illness. The first EV-D68 outbreak in the United States in 2014 aroused widespread concern among the public and health authorities. The infection was found to be associated with increased surveillance of acute flaccid myelitis, a neurological condition that causes limb paralysis in conjunction with spinal cord inflammation. In vitro studies utilising two-dimensional (2D) and three-dimensional (3D) culture systems have been employed to elucidate the pathogenic mechanism of EV-D68. Various animal models have also been developed to investigate viral tropism and distribution, pathogenesis, and immune responses during EV-D68 infection. EV-D68 infections have primarily been investigated in respiratory, intestinal and neural cell lines/tissues, as well as in small-size immunocompetent rodent models that were limited to a young age. Some studies have implemented strategies to overcome the barriers by using immunodeficient mice or virus adaptation. Although the existing models may not fully recapitulate both respiratory and neurological disease observed in human EV-D68 infection, they have been valuable for studying pathogenesis and evaluating potential vaccine or therapeutic candidates. In this review, we summarise the methodologies and findings from each experimental model and discuss their applications and limitations.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Mielite , Doenças Neuromusculares , Humanos , Animais , Estados Unidos , Camundongos , Enterovirus Humano D/fisiologia , Doenças Neuromusculares/complicações , Mielite/complicações , Mielite/epidemiologia , Paralisia/complicações
19.
Elife ; 122023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850626

RESUMO

Enterovirus D68 (EV-D68) is a re-emerging enterovirus that causes acute respiratory illness in infants and has recently been linked to Acute Flaccid Myelitis. Here, we show that the histone deacetylase, SIRT-1, is essential for autophagy and EV-D68 infection. Knockdown of SIRT-1 inhibits autophagy and reduces EV-D68 extracellular titers. The proviral activity of SIRT-1 does not require its deacetylase activity or functional autophagy. SIRT-1's proviral activity is, we demonstrate, mediated through the repression of endoplasmic reticulum stress (ER stress). Inducing ER stress through thapsigargin treatment or SERCA2A knockdown in SIRT-1 knockdown cells had no additional effect on EV-D68 extracellular titers. Knockdown of SIRT-1 also decreases poliovirus and SARS-CoV-2 titers but not coxsackievirus B3. In non-lytic conditions, EV-D68 is primarily released in an enveloped form, and SIRT-1 is required for this process. Our data show that SIRT-1, through its translocation to the cytosol, is critical to promote the release of enveloped EV-D68 viral particles.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Sirtuína 1 , Ativação Viral , Humanos , COVID-19 , Enterovirus/genética , Enterovirus/fisiologia , Enterovirus Humano D/genética , Enterovirus Humano D/fisiologia , Infecções por Enterovirus/genética , Infecções por Enterovirus/fisiopatologia , Doenças Neuromusculares , Provírus , SARS-CoV-2 , Envelope Viral/metabolismo , Envelope Viral/fisiologia , Ativação Viral/genética , Ativação Viral/fisiologia , Sirtuína 1/genética , Sirtuína 1/fisiologia
20.
Emerg Infect Dis ; 29(11): 2315-2324, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37877582

RESUMO

Enterovirus D68 (EV-D68) causes cyclical outbreaks of respiratory disease and acute flaccid myelitis. EV-D68 is primarily transmitted through the respiratory route, but the duration of shedding in the respiratory tract is unknown. We prospectively enrolled 9 hospitalized children with EV-D68 respiratory infection and 16 household contacts to determine EV-D68 RNA shedding dynamics in the upper respiratory tract through serial midturbinate specimen collections and daily symptom diaries. Five (31.3%) household contacts, including 3 adults, were EV-D68-positive. The median duration of EV-D68 RNA shedding in the upper respiratory tract was 12 (range 7-15) days from symptom onset. The most common symptoms were nasal congestion (100%), cough (92.9%), difficulty breathing (78.6%), and wheezing (57.1%). The median illness duration was 20 (range 11-24) days. Understanding the duration of RNA shedding can inform the expected rate and timing of EV-D68 detection in associated acute flaccid myelitis cases and help guide public health measures.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Infecções Respiratórias , Criança , Adulto , Humanos , Enterovirus Humano D/genética , Colorado/epidemiologia , Sistema Respiratório , Infecções por Enterovirus/epidemiologia , Surtos de Doenças , RNA , Infecções Respiratórias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...